1.有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
答:把两根香同时点起来,第一支香两头点着,另一支香只烧一头,等第一支香烧完的同时(这是烧完总长度的3/4),把第二支香另一头点燃,另一头从燃起到熄灭的时间就是15分!
2.一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?
答:三女的年龄应该是2、2、9。因为只有一个孩子黑头发,即只有她长大了,其他两个还是幼年时期即小于3岁,头发为淡色。再结合经理的年龄应该至少大于25。
3.有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。可是当初他们三个人一共付出$30那么还有$1呢?
答:一共付出的30元包括27元(25元给老板+小弟贪污2元)和每人退回1元(共3元),拿27和2元相加纯属混淆视听。
4.有两位盲人,他们都各自买了两对黑袜和两对白袜,八只袜子的布质、大小完全相同,而每对袜子都有一张商标纸连着。两位盲人不小心将八双袜子混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?
答:每对袜子都拆开,每人各拿一支,袜子无左右,最后取回黑袜和白袜各两对。
5.有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
答:两个火车在相聚的之前鸟是一直在匀速飞行的,设:洛杉矶纽约距离为A,则鸟飞行的时间为A/(10+20),在乘以30就是鸟的飞行距离。
6.你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
答:一个罐子放一个红球,另一个罐子放49个红球和50个蓝球,概率接近75%. 这是所能达到的最大概率了。实际上,只要一个罐子放<50个红球,不放篮球,另一个罐子放剩下的球,拿出红球的概率就大于50%
7.你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
答:1号罐取1丸,2号罐取2丸,3号罐取3丸,4号罐取4丸,称量该10个药丸,比正常重量重几就是几号罐的药有问题。
8.你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?
答:4个因为只有三种颜色,当你拿到4个时候一定有重复的。
9.对一批编号为1~100,全部开关朝上(开)的灯进行以下*作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。
答:1,4,9,16,25,36,49,64,81,100 所有的质数因为都只有1和他本身两个约数,所以都会先下后上各一次.故最后的状态为开. 而合数至少有两个或两个以上的约数,如果它有偶数个不同的约数时,这个合数所对应开关的状态将为开. 如果它有奇数个约数时,则对应开关将为关.我们知道任何一个合数当它只有奇数个约数时,必然是它某个约数的平方.检查1-100所有的数,可得到答案.
10.想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
答:镜像对称的轴是人的中轴
11.一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?
答:有三个人戴黑帽。假设有N个人戴黑,当N=1时,戴黑人看见别人都为白则能肯定自己为黑。于是第一次关灯就应该有声。可以断定N>1。对于每个戴黑的人来说,他能看见N-1顶黑帽,并由此假定自己为白。但等待N-1次还没有人打自己以后,每个戴黑人都能知道自己也是黑的了。所以第N次关灯就有N个人打自己。
12.两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?
答:内,小圆转1圈。外为6圈,小圆的圆心为实际的移动周长。
13.1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?
答:39瓶,从第2瓶开始,相当于1元买2瓶。20——10——5(余1)——2(+1)——1(+1)——1
14.微软:有8颗弹子球,其中1颗是“缺陷球”,也就是它比其他的球都重。你怎样使用天平只通过两次称量就能够找到这个球﹖
答: 把球分为2、3、3三组记为a、b、c,把b、c放入天平,如果平衡,重的球在a中,在把a分为1、1的两组就可以搞定了;如果不平衡如b重,就说明重的球在b里面,把b分为1、1、1三组随便称两个就可以知道我们要的是哪个。
15.一个正三角形的每个角上各有一只蚂蚁。每只蚂蚁开始朝另一只蚂蚁做直线运动,目标角是随机选择。蚂蚁互不相撞的概率是多少﹖
答:只有两种方法可以让蚂蚁避免相撞:或者它们全部顺时针运动,或者它们全部逆时针运动。否则,肯定会撞到一起。选择一只蚂蚁,一旦它确定了自己是逆时针或者是顺时针运动,其他的蚂蚁就必须做相同方向的运动才能避免相撞。由于蚂蚁运动的方向是随机选择的,那么第二只蚂蚁有1/2的概率选择与第一只蚂蚁相同的运动方向。第三只蚂蚁也有1/2的概率选择与第一只相同的方向。因此,蚂蚁避免撞到一起的概率是1/4。
16.微软。估算一下一个行进在小雨中的人5分钟内身上淋到的雨的质量
答:近似认为雨滴垂直地面降落,下雨降水量为0.2mm ,近似认为雨水密度为1000kg/m^3 ,假设人的肩膀宽度为0.5m,人的行进速度为50m/min ,则人在5min中走过的面积为0.5*50*5=125平米,在此面积内落雨体积为0.0002*125=0.025立方米,所以此落雨质量为0.025*1000=25kg
17.一楼到十楼的每层电梯门口都放着一颗钻石,钻石大小不一。你乘坐电梯从一楼到十楼,每层楼电梯门都会打开一次,只能拿一次钻石,问怎样才能拿到最大的那颗?
答:前三个一律不拿,以后的一个如果比它前面的三个都大,就拿,不然就不拿。一直到第10个如果还不符合就拿它。可以参考CMO2004(或2003)的一个题,证明比较长,这里不写了。这样拿到前三大的概率是70%多,最大的是30%多,是很好的情况了。绝对最大的情况不存在。
推广一下:有M个的话,把3改为与M/3最接近的整数。
18.用3种颜色为一个二十面体涂颜色,每面都要覆盖,你能够用多少种不同的涂法?你将选择哪三种颜色?
答:应该是个数列问题,三个颜色是随便的,各人所好。涂法思路:第一面色彩选择三种的一种,第二面选择三种的一种……故一共有:3的20次方减3种(3种单纯色)。
去除所有色只有两色的方案有:2的20次方减2(2种单纯色)乘3种(两色的配色方案有3种)。
结果为3486784398-3145722 = 3483638676种。
19. Intel EE的IQ测试题 有10堆苹果,每一堆10个其中一堆每个240g其它每堆都是250g/个有一把称请你只称一次把那一堆240的苹果找出来。
答:从1到10每堆取1、2、3、4、5。。。10个,称重一下,看一下重量就知道哪个堆了。
20. 你让工人为你工作七天,回报是一根金条。这个金一平分成相连的7段, 你必须在每天结束的时候给他们一段金条如果只许你两次把金条弄断,你如何给你的工人付费?
答案:分为三段,分别为1/7、2/7、4/7,用人民币找钱的方式发放工资。
21.如果你有无穷多的水,一个3夸脱的和一个5夸脱的提桶,你如何准确称出4夸脱的水?
答:先把3承满到如5中,在承满3再次到入5中,这样就可以得到1,把5中的全部到掉,把得到的1导入在到入一个3就可以得到4了
22.中科院的一道面试题:有1升、8升、27升三个桶,要求:水龙头只能打开一次,而且不能浪?费水,如何才能称得13升水?
答:这道题没有什么意思,一个8五个1倒入27中就可以了,打开水龙头,在接8升桶的水的同时,在上面接5个1升桶的水,倒入27升桶,然后,8升桶接满,再倒入27升桶。当时我想,既接满了水,又可以说是一滴水也没浪费。
23.一个人死了以后在黄泉路上有一个岔路口,一条是到天堂的,另一条到地狱,分别有一个魔鬼把守,一个魔鬼只说真话,另一个只说假话(哪个说真or假不知道);这个人只可以问一个问题,问哪个都可以,但只一共只可以问一个,问你他怎么才能到天堂?
答:问随便其中的一个””””如果我问他(就是你问的旁边的那一个)哪条是通向地狱的路,他会怎么回答?””” 这样问不管问到谁,得到的答案不对 ,也就是回答的正好是通向天堂的路.
24.一个旅行者遇到三个美女,他不知道哪个是天使,哪个是魔鬼.天使说真话,魔鬼说假话.
甲说:在乙和丙之间,至少有一个是天使.
乙说:在丙和甲之间,至少有一个是魔鬼.
丙说:我告诉你正确的消息吧.
你能判断出有几个天使吗?
答:两个!甲和乙!丙是魔鬼!因为:如果甲是魔鬼的话,那乙和丙都不是天使,也就是说乙说的话是假话,那么丙和甲就该都不是魔鬼!与前面假设不符,所以甲不可能是魔鬼!就是这样!!
25.Lg假设每天从伦敦到纽约发一艘客轮,同时从纽约也发伦敦一艘,路程用7天,问从伦敦发的客轮到达纽约时,中途和几艘客轮迎面相遇?
答:13,在它出发的时候在海上已经存在6艘船了,这样每天我们可以遇到2艘船,在到达的那一天只能遇到1艘,因为还有一艘是没有出发的。
26 12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)(5分钟-1小时)
答:(1) 分为444三组,取任意两个4放在天平上,如果平,那么在剩下的4个里,下面分为11称第二次,不管平不平都换掉一个,就会知道那个是要求的;(2) 如果44不平,则把这8个分为233三种,用14题结合(1)的方法搞定即可。(3) 如果13就分为445,先用44,不平用(1),平就取再取3个加入5中用(2)
27 门外三个开关分别对应室内三盏灯,线路良好,在门外控制开关时候不能看到室内灯的情况,现在只允许进门一次,确定开关和灯的对应关系?
答:首先让3个开关处于同一种状态(这时我们不知道是开还是关),然后改变其中两个,10分钟后,再改变这两个中的一个,5分钟后再改变两个中的另一个,然后进屋,根据灯泡的温度就可以知道对应关系了。(开的时间长短直接影响到进屋时候灯泡的温度,而且如果开始都是开着的,进屋时候有两个开着;如果开始是关着的,进屋时候有2个是关着的。不管怎样3个灯对应的温度都是热、温、凉三种)
28人民币为什么只有1、2、5、10的面值?
答:因为这样用这四种面试可以拼凑出来任何面值的钱
29太阳总是从东边升起吗?
答:不是,如果我们站在极点上所有的方向都是一致的。在北极点,根本就没有“东方”这个方向。每一个方向都是南。在6个月的“极昼”时间,太阳从南边升起从南边落下。另外在南极也一样,每一个方向都是北方。
30烧一根不均匀的绳需用一个小时,如何用它来判断半个小时?
答:这道题伶仃一看还以为和那个(有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?)一样呢,其实只要两头一起点燃就可以得到半个小时了,呵呵,骗人的!
31有4个女人要过一座桥。她们都站在桥的某一边,要让她们在17分钟内全部通过这座桥。这时是晚上。她们只有一个手电筒。最多只能让两个人同时过桥。不管是谁过桥,不
答:是一个人还是两个人,必须要带着手电筒。手电筒必须要传来传去,不能扔过去。每个女人过桥的速度不同,两个人的速度必须以较慢的那个人的速度过桥。
第一个女人:过桥需要1分钟;
第二个女人:过桥需要2分钟;
第三个女人:过桥需要5分钟;
第四个女人:过桥需要10分钟。
比如,如果第一个女人与第4个女人首先过桥,等她们过去时,已经过去了10分钟。如果让第4个女人将手电筒送回去,那么等她到达桥的另一端时,总共用去了20分钟,行动也就失败了。怎样让这4个女人在17分钟内过桥?还有别的什么方法?
答案:过河的问题,他们的思路就是要有去有回,这道题主要就是要让时间尽可能的少用,那么最好的就是让大时间10、5一起过去,又不用回来,于是我们按照下面的方法过桥:2和1一起,1回来,用时3;10和5一起,2回来,用时12;2和1一起再过去,用时2。一共用时3+12+2=17,